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ABSTRACT

In this work, we present a machine learning method to guide an ultrasound operator towards a selected area
of interest. Unlike other automatic medical imaging methods, ultrasound imaging is one of the few imaging
modalities where the operator’s skill and training are critical in obtaining high quality images. Additionally,
due to recent advances in affordability and portability of ultrasound technology, its utilization by non-experts
has increased. Thus, there is a growing need for intelligent systems that have the ability to assist ultrasound
operators in both clinical and non-clinical scenarios. We propose a system that leverages machine learning to
map real time ultrasound scans to transformation vectors that can guide a user to a target organ or anatomical
structure. We present a unique training system that passively collects supervised training data from an expert
sonographer and uses this data to train a deep regression network. Our results show that we are able to recognize
anatomical structure through the use of ultrasound imaging and give the user guidance toward obtaining an ideal
image.
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1. INTRODUCTION

Ultrasound imaging is a safe and efficient imaging modality that has been in use for clinical diagnosis for
decades.1–3 Ultrasound is unlike other automated imaging modalities (MRI, Xray, PET) because the quality
of ultrasound images is highly operator-dependent. Therefore a well trained sonographer is critical to fully
realizing the diagnostic capabilities of ultrasonography.4 Computer Aided Diagnostic (CAD) systems supported
by machine learning technology have successfully been implemented for assisting clinical diagnosis in a variety of
settings, including breast tumor classification, liver diseases, and thyroid nodule diagnosis.5 CAD systems have
thus become a powerful tool for clinicians in those settings. In our project, we aim to leverage machine learning
to assist an ultrasound operator in finding a selected area of interest, such as a particular organs, nerves, arteries,
etc..

The successful implementation of this machine learning model would have widespread impact in both clinical
and non-clinical settings. With recent advances in the ultrasound technology, ultrasound devices have become
more affordable, durable and portable resulting in the growth of its utilization by non-radiologist physicians.6

Advancements in the ultrasound technology and machine learning support CAD systems can be leveraged to
make ultrasound imaging accessible for utilization by non-experts. In order to train such a system, we developed
a framework that is able to collect supervised training data in a passive manner, alleviating the costly burden on
physicians for labeling thousands of ultrasound images and video. We also leverage machine learning techniques
such as transfer learning to utilize neural network weights that have been pre-trained on millions of images in
order to boost the accuracy of our system.

2. BACKGROUND

With recent advancements in deep learning and computer vision, especially convolutional neural networks
(CNNs), there has been a sharp rise in the use of CNNs for medical imaging in various tasks, i.e. image
classification, detection, enhancement, image generation, registration and segmentation.7 CNNs are a type of
deep learning model used for identifying patterns in grid-like data such as 2D representation of images.8 A CNN
consists mainly of three types of layers: convolution and pooling layers that help extract the features from the
image and a fully connected dense layer that maps the extracted features to the final output. The ability of a



CNN to extract and identify features from anywhere in the image makes it highly efficient in image processing.8

In the past few years several CNN architectures have been published that show impressive performance on a
variety of image based tasks. Some of the notable CNN architectures include but are not limited to VGG-16,9

Inception-v3,10 and ResNet-50.11

2.1 Network Architecture

For our work, we selected the VGG-16 CNN architecture. VGGNet is among the influential networks developed
by Simonyan et al.9 that presented an effective design principle for CNN architectures. ZfNet previously
had suggested that the performance of CNNs could be improved by using smaller filter sizes12 which VGG
experimentally demonstrated by replacing filters of higher order by 3x3 filters. Small size filters reduced the
number of free parameters and consequently the computational complexity of the optimization problem, starting
a trend in CNN research to work with smaller filters. VGG was able to perform well for image classification as
well as localization problems.13 Three models, varying only in the number of convolutional layers, were proposed
- VGG-11, VGG-16, and VGG-19 with 11, 16, and 19 layers respectively.9

2.2 Transfer Learning

Deep learning methods need massive amounts of data to discover patterns in the data, which makes them highly
data dependent.14 Since collection of data is expensive and complex, some domains face the inevitable problem of
insufficient training data.15 One solution to this issue is transfer learning. Transfer learning solves the problem of
insufficient training data by using knowledge learnt in one domain (source) to another (target). Transfer learning
relaxes the assumption that the training data and the test data must be from the same domain, replacing it with
the weaker assumption that the domains are merely similar.16 One of the approaches for deep transfer learning
is network-based deep transfer learning which is, “similar to the processing mechanism of the human brain, and
it is an iterative and continuous abstraction process. The front-layers of the network can be treated as a feature
extractor, and the extracted features are versatile”.15

One of the many domains that faces the problem of insufficient training data is medical imaging. Collecting
and labeling biomedical images is a tedious, time consuming and costly task that demands domain specific
knowledge and skills which are difficult to acquire.17 Many researchers have demonstrated the use of transfer
learning by using fine-tuned CNNs for biomedical image analysis.18–20 In our approach, we use transfer learning
by freezing the pre-trained convolutional layers of CNNs trained on ImageNet and only training two new fully
connected layers at the top.

2.3 Deep Regression Models

Since the goal for our framework is to predict continuous values, we employ a regression technique. Traditionally,
deep learning architectures have shown high performance in computer vision tasks such as image classification
or object detection but there are many scenarios such as head-pose estimation,21 facial landmark detection,22

human pose estimation,23 or age estimation24 where the deep learning architectures are used to solve regression
problems. In most of these scenarios, the softmax layer of the deep learning models used for classification are
replaced by a fully connected regression layer with linear or sigmoid activation,25 and this is the approach we
follow.

3. DESCRIPTION OF PURPOSE

Our work has two primary goals. The first goal is to create a dataset of ultrasound images with their corre-
sponding transformation information. We use an external device to record six degrees of freedom from the hand
of the sonographer, e.g. x position, y position, z position, yaw, pitch, and roll orientation. The transformation
data is then associated with an ultrasound image captured by the probe. For our prototype we used two off-the-
shelf devices to detect the position of the probe. The first is a visual only device that detects the position and
orientation of a persons hand called the Leap Motion Device∗. The second device is an active tracking device

∗Leapmotion. https://leapmotion.com/
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Figure 1. Visualization of tracking the hand skeleton using a Leap motion device. The Leap device is mounted above,
facing down towards the scanning plane. The physician is scanning for the median nerve using an ultrasound probe and
the position of the physician’s hand is being tracked and recorded through the Leap motion SDK. The positional vectors
are timestamp matched to ultrasound images for training of the deep regression network.

with base station called the Vive Tracker†. Both devices are low cost methods of gathering the transform of the
sonographer’s hand during the ultrasound imaging process.

The second goal is to train a deep neural network that can map an input ultrasound image to a set of values
representing a vector displacement from the ideal area of interest. This displacement can be used to guide the
operator’s hand toward the desired location. Mathematically, this is a regression problem where inputs will be
the ultrasound images and the outputs will the set of real-valued vector coordinates. For the neural network,
we utilize transfer learning, widely used in computer vision, by fine-tuning a model pre-trained on a source task
using training images from the target task.

4. METHOD

For our methodology, we focus on the localization of the median nerve and radial artery in the arm. The median
nerve runs from the forearm to into the wrist (carpal tunnel) then into the hand. It provides sensation to the
palm and fingers. When the nerve is compressed, it can lead to tingling, numbness, or weakness in the hand.
Ultrasound imaging of this region is necessary for proper diagnosis of carpal tunnel syndrome. In other cases,
localization by an anesthesiologist may be necessary when performing an median nerve block during surgery or
treatment.

4.1 Passive Collection of Supervised Data

For our regression problem, the training dataset requires a set of ultrasound images of and around the median
nerve, each labeled with a set of transformation values that “point” towards the ideal image. If we consider the
ideal image as the origin, we can associate each surrounding ultrasound image with a displacement vector from
the origin.

Each subject has their median nerve scanned for approximately 60 seconds. During this time, the sonographer
scanned back and forth around the area of interest. This process captured the surrounding anatomy of the area
while positional data of the sonographer’s hand was being tracked. Around the 45 second mark, the sonographer
located and identified the best image of the nerve and remain fixated on this area as time expired. Thus,
the best image was the last image in the collection sequence, and the “origin” transformation vector was the
vector associated with the last image frame. We then can use this vector as the relative origin for all other
transformation data previously collected during the ultrasound scan.

The ultrasound imaging data is captured using a SonoSite Edge II ultrasound machine. This machine can
store video at a resolution of 640x480. The video captured comes in at 7.5 frames per second. The probe used for
the experiments is a Linear probe (6-13 MHz). For the purposes of this study, we remove all personal information
from the video (e.g. patient name, date, and other associated metadata), and crop out just the ultrasound image
portion. This center region is used as the input image to the neural network and has a resolution of 525x255. For

†Vive Tracker. https://www.vive.com/us/vive-tracker/
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Figure 2. Images of the experimental process using the HTC Vive tracker and base station. In (a), we capture both the
ultrasound image and six degrees of freedom from the Vive tracker strapped to the sonographer’s hand. In (b), we show
the Vive base station required as a frame of reference for the tracker. The base station must be within line of sight of the
tracker unit.

the transformation data, we experimented with two devices. One was the Leap motion device and the second
was the Vive Tracker.

A Leap Motion Controller is a motion sensor that uses an infrared scanner and sensor to map and track the
human hand. It uses video only, and does not require any additional hardware. A Leap Motion Controller’s raw
sensor capability has been validated as reliable.26 It has also been determined that a Leap Motion Controller can
relay static positional data with a standard deviation of less than 0.5mm.27 We use the Leap Motion Controller
to track and capture the position of the sonographer’s hand holding the ultrasound probe. See Figure 1 for a
visualization of the Leap motion capture system.

The Vive tracker is a motion accessory that was designed to track physical controllers in the real world while
the user is immersed in virtual reality. However, we repurposed this technology to track without a VR headset
using the pyopenvr python library.

The Vive uses a “lighthouse” tracking system that consists of base stations which emit timed infrared pulses
at 60 pulses per second. These are then received by the tracker to produce measurements with sub-millimeter
precision. Valve’s lighthouse boxes use spinning LEDs and active laser emitters that flash a beam of light across
the tracking space. The tracker has photosensors that detect the flashes and the laser beams. Using the laser
time of travel, the photosensors can compute their exact position relative to the base stations in the room. An
example of the Vive setup can be seen in Figure 2.

The images captured from the ultrasound probe and the positional information obtained from the Leap
Motion Controller or Vive tracker are mapped based on their corresponding timestamps to get the final dataset.
This system is able to passively collect supervised training data by simply watching/recording the sonographer
scan for a specific area of interest and specifying which image is the ideal image.

4.2 Training the Deep Regression Model

For our machine learning framework, we implemented a VGG16 model using the Keras‡ library, fine-tuned to
ultrasound images. VGG16 is a convolutional neural network with a stack of 16 convolutional layers followed by
three fully connected layers and a final soft-max layer.9 The soft-max layer makes it fit for classification problem
but not for regression. Thus, in order to fine tune the model, we froze all the pre-existing layers and removed
the soft-max output layer.

Next, we created 2 models, one for the positional regression, and one for the orientation regression task.
The models were modified to contain a fully connected layer of 128 neurons with a tanh activation function, a

‡Keras Deep Learning Framework https://keras.io/



dropout of 0.2, and then a final output of size 3 to correspond to the real valued vector parameters. Ultimately,
our model was able to utilized transfer learning, allowing us to use a deep learning model pre-trained with a
huge dataset of real world images (ImageNet) on our task of regression on ultrasound images.

5. EXPERIMENTS AND RESULTS

5.1 Data Collection Comparison

In this section we present qualitative observations on the data collection devices that we tested, the Leap Motion
and the Vive Tracker. Table 1 delineates the positive and negative experiences we encountered during testing.

Feature Leap Motion (vision only) Vive Tracker (hardware)
Cost The leap motion is a very low cost (<$100

USD) and fairly accurate device
The vive tracker is relatively low cost but
requires the purchase of trackers as well as
a base station (<$350 USD).

Tracking Tracking is accurate with the leap motion
when the device has a clear, unobstructed
view of the sonographer’s hand. Occasion-
ally, the leap motion would lose sight of the
hand during the experimental procedure.

The vive tracker is strapped onto the sono-
grapher’s hand. If the line of sight be-
tween the base station and the tracker is
completely obstructed, this could result in
a loss of tracking; however, in our experi-
ments, this never occurred.

Ease of Use Setup requires mounting the leap motion
above the examination plane. Sonographer
does not need to wear any tracking device;
however, must pay careful attention that
the leap can see and track their hand.

Base station can be placed anywhere with
line of sight. Sonographer must strap the
tracking device to their hand.

Overall Overall, the leap motion provided an inad-
equate data collection experience. The ro-
bustness of the method was not useabled
for our final framework.

The vive tracker was robust and fairly easy
to use. The tracker strapped to the sonog-
rapher’s hand did not hinder the scanning
process. Although a little more expensive,
this device was preferred.

Table 1. Feature comparison between the Leap motion device and the HTC Vive tracker. Ultimately, the Vive tracker
provided a more robust tracking experience.

After these preliminary observations, we decided to move forward with data collection using the HTC Vive
Tracker. When experimenting with the Leap Motion, we had the occasional loss of tracking occur. This would
happen when the physician’s hand over rotated and obscured the physician fingers. Without these landmarks,
the vision only system could not recover the correct pose.

Additionally, and quite unexpectedly, the values being tracked with the Leap motion and vision only system
would jump significantly. Upon further inspection, we noticed that the hand being tracked would jump from
the physician hand to the imaging subject’s hand. In order to solve this, we had to obscure the subject’s hand
during the experiment with a towel as seen in Figure 1. While this resolved this problem, we note that the vision
only system was not robust enough in general for our research.

5.2 Experimental Setup

For our experiments, we collected a total of 3,722 ultrasound images with transformational data around the me-
dian nerve in 10 different subjects (subject 8 was ultimately left out of training due to timestamp discrepancies).
We used a leave-one-out method in order to train, test, and evaluate our model. With the leave-one-out subject
model, the entire set of the testing subject’s images were not seen by the model at training time. A sample 60
second capture is shown in Figure 3.
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Figure 3. Images captured during a scan for the median nerve and radial artery. Images (a)-(g) are images that have
been captured at a frame times 0-300, at intervals of 50. These images are used for training the regression network. Each
of these images are associated with a transformation vector that measures its displacement from the ideal result. Image
(h)&(i) show the ideal result with the median nerve centered and the radial artery clearly visible in the image.

(a) Position (b) Position Dropout (c) Orientation (d) Orientation Dropout

Figure 4. Training and validation results with s-fold cross validation, and when s=10. The graphs (a) & (b) show the
translation loss smooths out when using dropout in training. A similar effect can be seen with the orientation in (c) &
(d). Note that dropout is always turned off during validation and testing.

As mentioned above, we used the HTC Vive Tracker for data collection. The tracker is oriented such that
the X axis is parallel to the forearm, the Z axis is perpendicular to the forearm, and the Y axis is vertical to the
arm. We define the Pitch as the angle that rotates around the X axis, the Yaw as the angle that rotates around
the Y axis, and the Roll as the angle that rotates around the Z axis.

5.3 Model Performance

To train the neural network models, we performed a small amount of data augmentation on the input - rotation
range of 2 degrees, width, height, and zoom shifts of up to 2 percent. Interestingly, more data augmentation did
not help the system generalize to unseen data (in fact it prevented the system from reducing the training loss).
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Figure 5. Graphs illustrating the difference between the actual measured distance to the target area of interest and the
predicted distance by the trained model for the X axis (parallel to the median nerve) on different subjects. The video
spans approximately 60 seconds of scanning for each subject and the distance is reported in centimeters.

We also chose to create two models, one for translation, and one for orientation due to the scale discrepancy of
outputs (meters vs degrees). The magnitude of degrees was much larger than the translation and thus dominated
the gradient in a model where both features were predicted simultaneously. We train the model for 40 epochs
using a mean squared error loss. The training time on an Intel I9 3.6 Ghz CPU with an Nvidia RTX 2080 is
approximately 14.6 minutes per fold. Sample training and validation error can be seen in Figure 4 where we
highlight the smoothness of validation when using dropout in the model.

Quantitatively, our model was able to predict the transformation vectors for each degree of freedom. Here,
although we did train and predict for the Y axis, we realized that this direction does not support the ultrasound
scanning procedure. We also note that the Y position did not correspond to pressure, and should be disregarded
by the ultrasound operator. Thus, we do not report the Y regression degree of freedom as the probe should
always remain in contact with the subject’s arm. The mean and standard deviation on this dataset of each of
the degrees of freedom is the following:

• Mean X distance error is 1.19 cm ± 0.98 cm (parallel to median nerve)

• Mean Z distance error is 1.78 cm ± 1.32 cm (perpendicular to median nerve)

• Mean Yaw distance error is 4.38 degrees ± 3.20 degrees (axis around Y)

• Mean Pitch distance error is 4.26 degrees ± 3.58 degrees (axis around X)

• Mean Roll distance error is 4.22 degrees ± 2.67 degrees (axis around Z)

In addition, we present graphs of the predicted and ground truth values as a function of time in Figure 5. The
predicted line show is smoothed by a hamming convolutional window over 15 frames. This signal convolution
was necessary to provide some temporal consistency to the neural network output. As demonstrated, the model
is generally able to accurately predict the displacement vector from the ideal ultrasound image.

5.4 Limitations

For this study, we had a small number of samples (N=10) and there is a significant amount of variation between
subjects. In future work, we anticipate that with a greater number of subjects the training distribution would
better represent the testing distribution and the model should generalize better. Also, finding an adequate
image of the median nerve is an easier task than many other internal organs such as the liver and heart. We
are encouraged by our current research and proof of concept, but would need a more extensive evaluation to
extend this work to other organs. Finally, there are more degrees of freedom involved in the scanning process.
One particularly important factor is the pressure that the sonographer applies to the target area. This is a
difficult measurement to capture without actually modifying the ultrasound probe, and is something we would
like to address in future work. Being able to capture more data from different target areas of the body with high
precision would be the key to translating this research to the clinical setting.



6. CONCLUSION

In conclusion, we present a guided ultrasound imaging framework using a deep regression neural network. The
training data is obtained passively, by simply observing the ultrasound sonographer during the scanning pro-
cess. We tested several tracking methods and presented the benefits of each of method. Next, we captured
transformation data using the HTC Vive Tracker and matched the data to ultrasound images via their corre-
sponding timestamps. We then trained a deep neural network using transfer learning and fine-tuning techniques
to regress to the optimal transformation vector. Our quantitative and qualitative results show that we are able
to accurately estimate these vectors when finding the median nerve in a subject’s arm.
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